鼎盛国际

[工业机器人]工业机器人的基本组成

  4. 弧焊机器人编程技术

  焊接机器人现场作业图片

  2. 插补方式

  3)提高了编程效率与质量,可适用高级语言对复杂任务进行编程。

  1)减少机器人不工作时间。

  (2)定居插补 每隔一定距离插补一次,可避免快速运动时,定时插补造成的轨迹失真,但也受伺服周期限制。

  (2)离线编程 在算计机中建立设备、环境及工件的三维模型,对虚拟环境中的机器人进行编程。它充分利用了计算机图形学的成果,建立机器人及其工作环境的模型,再利用一些规划算法,通过对图形的控制和操作,在离线的情况下进行编程。离线编程的主要优点如下:

  1)手把手示教(早期的机器人采用)。

  焊接机器人图片

  2)改善了编程环境,使编程者远离危险的工作环境。

  目前,工业机器人基本操作方式多为示教再现。示教时,不能将轨迹上的所有点都示教一遍,一是费时,二是占用大量的存储器。

  依据机器人运动学理论,机器人手臂关节在空间进行运动规划时,需进行的大量工作时对关节变量的插值计算。插补是一种算法,对于有规律的轨迹,仅示教几个特征点。例如,对直线轨迹,仅示教两个端点(起点、终点);对圆弧轨迹,需示教三点(起点、终点、中间点),轨迹上其他中间点的坐标通过插补方法获得。实际工作中,对于非直线和圆弧的轨迹,可以切分成若干个直线段或圆弧段,以无限逼近的方法实现轨迹示教。

  示教编程的优点是不需要预备知识和复杂的计算机装置,方法简单、易于掌握。而它的缺点是占用生产时间,难于适应小批量、多品种的柔性生产需要;编程人员工作环境差、强度大,一旦失误,会造成人员伤亡或设备损坏;编程效率低。

  1. 关节轴控制原理

  2)示教盒示教(目前的机器人多采用)。

  焊接机器人图片

  焊接机器人图片

  绝大多数工业机器人采用关节式运动形式,很难直接检测机器人末端的运动,只能对各关节进行控制,属于半闭环系统,即仅从电动机轴上闭环。

  4)便于和CAD系统集成,实现CAD/CAM/Robotics一体化。因此,离线编程能够提高工作效率和工作质量,这是今后应用和发展方向。

  (1)示教编程 示教编程是目前工业机器人广泛使用的编程方法,根据任务需要,将机器人末端工具移动到所需的位置及姿态,然后把每一个位姿连同运行速度、焊接参数等记录并存储下来,机器人便可以按照示教的位姿再现。示教方式有两种:

  焊接机器人变位机

  焊接机器人图片

  (1)直线插补 在两示教点之间按照直线规律计算中间点坐标。

  3. 插补算法

  (2)圆弧插补 按圆弧规律计算中间点。

  (1)定时插补 每隔一定时间插补一次,插补时间间隔一般不超过25ms。

  朝洪机器人

  (3)机器人机械手的控制

  当一台机器人机械手的动态运动方程已给定,它的控制目的就是按预定性能要求保持机械手的动态响应。但是,由于机器人机械手的惯性力、耦合反应力和重力负载都随运动空间的变化而变化,因此要对它进行高精度、高速度、高动态品质的控制是相当复杂且困难的。

  示教也称为导引,即由用户引导机器人,一步步将实际任务操作一遍,机器人在引导过程中自动记忆示教的每个动作的位置、姿态、运动参数、工艺参数等,并自动生成一个连续执行全部操作的程序。

  朝洪机器人

  目前工业机器人上采用的控制方法是把机械手上每一个关节都当做一个单独的伺服机构,即把一个非线性的、关节间耦合的变负载系统,简化为线性的非耦合单独系统。

  完成示教后,只需给机器人一个启动命令,机器人将精确地按示教动作,一步步完成全部操作,这就是示教与再现。

  现在广泛应用的工业机器人都属于第一代机器人,它的基本工作原理是示教再现,如图1-1所示。

  轨迹规划的任务是用一种函数来“内插”或“逼近”给定的路径,并沿时间轴产生一系列“控制设定点”,用于控制机械手运动。目前常用的轨迹规划方法有空间关节插值法和笛卡尔空间规划两种方法。

  一、机器人的基本工作原理

  机器人的机械臂是由数个刚性杆体和旋转或移动的关节连接而成,是一个开环关节链,开链的一端固接在基座上,另一端是自由的安装着末端执行器(如焊枪),在机器人操作时,机器人手臂前端的末端执行器必须与被加工工件处于相适应的位置和姿态,而这些位置和姿态是由若干个臂关节的运动合成的。

  (1)机器人手臂的运动

  (2)机器人轨迹规划

  因此,机器人运动控制中,必须要知道机械臂各关节变量空间和末端执行器的位置和姿态之间的关系,这就是机器人运动学模型。一台机器人机械臂的几何结构确定后,其运动学模型即可确定,这是机器人运动控制的基础。

  机器人机械手端部从起点的位置和姿态到终点的位置以及姿态的运动轨迹空间曲线叫做路径。

  工业机器人的组成

  工业机器人

  ①气力驱动气力驱动系统通常由气缸、气阀、气罐和空压机等组成,以压缩空气来驱动执行机构进行工作。其优点是空气来源方便、动作迅速、结构简单、造价低、维修方便、防火防爆、漏气对环境无影响,缺点是操作力小、体积大,又由于空气的压缩性大、速度不易控制、响应慢、动作不平稳、有冲击。因起源压力一般只有60MPa左右,故此类机器人适宜抓举力要求较小的场合。

  四、传感系统

  ③电力驱动电力驱动是利用电动机产生的力或力矩直接或经过减速机构驱动机器人,以获得所需的位置、速度和加速度。电力驱动具有电源易取得,无环境污染,响应快,驱动力较大,信号检测、传输、处理方便,可采用多种灵活的控制方案,运动精度高,成本低,驱动效率高等优点,是目前机器人使用最多的一种驱动方法。驱动电动机一般采用步进电动机、直流伺服电动机以及交流伺服电动机。

  三、控制系统

  一、执行机构

  二、驱动系统

  工业机器人的驱动系统是向执行系统各部件提供动力的装置,包括驱动器和传动机构两部分,它们通常与执行机构连成一体。驱动器通常有电动、液压、气动装置以及把它们结合起来应用的综合系统。常用的传动机构有谐波传动、螺旋传动、链传动、带传动以及各种齿轮传动等。

  传感系统是机器人的重要组成部分,按其采集信息的位置,一般可分为内部和外部两类传感器。内部传感器是完成机器人运动控制所必需的传感器,如位置、速度传感器等,用于采集机器人内部信息,是构成机器人不可缺少的基本元件。外部传感器检测机器人所处环境、外部物体状态或机器人与外部物体的关系。常用的外部传感器有力觉传感器、触觉传感器、接近觉传感器、视觉传感器等。机器人传感器的分类如表1-3所示。

  工业机器人通常由执行机构、驱动系统、控制系统和传感系统四部分组成,如1-1所示。

  工业机器人的位置控制方式有点位控制和连续路径控制两种。其中,点位控制方式只关心机器人末端执行器的起点和终点位置,而不关心这两点之间的运动轨迹,这种控制方式可完成无障碍条件下的点焊、上下料、搬运等操作。连续路径控制方式不仅要求机器人以一定的精度达到目标点,而且对移动轨迹也有一定的精度要求,如机器人喷漆、弧焊等操作。实质上这种控制方式是以点位控制方式为基础,在每两点之间用满足精度要求的位置轨迹插补算法实现轨迹连续化的。

  传统的工业机器人仅采用内部传感器,用于对机器人运动、位置及姿态进行精确控制。使用外部传感器,使得机器人对外部环境具有一定程度的适应能力,从而表现出一定程度的智能。

  机器人传感器分类

  ②液压驱动液压驱动系统通常由液动机(各种油缸、油马达)、伺服阀、油泵、油箱等组成,以压缩机油来驱动执行机构进行工作,其特点是操作力大、体积小、传动平稳且动作灵敏、耐冲击、耐振动、防爆性好。相对于气力驱动,液压驱动的机器人具有大得多的抓举能力,可高达上百千克。但液压驱动系统对密封的要求较高,且不宜在高温或低温的场合工作。

  执行机构是机器人赖以完成工作任务的实体,通常由一系列连杆、关节或其他形式的运动副组成。从功能的角度可分为手部、腕部、臂部、腰部和机座,如图1-2所示

上一篇:[业绩]8种方法提升你的业绩,优秀的销售必学
下一篇:[东吴人寿]东吴人寿成立六年仍未扭亏 4.975%股权